
Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 1 of 31

Invited Talk at Paris VII

HPSG Design and Meet Semi-latticehood

Gerald Penn

Dept. of Computer Science
University of Toronto

(joint work with Rouzbeh Farahmand)

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 2 of 31

Meet Semi-latticehood

 A partially ordered set, (P,<), is a meet semi-lattice
iff for every x,y in P, meet(x,y) is also in P.

 Meet is another word for greatest lower bound. It
is therefore spatially defined.
 Copestake (2002) draws her partial orders in the opposite

orientation of mine (the type denoting everything is on
the top), but she still refers to these structures as MSLs.
They're not – for her, they should be join semi-lattices.

 A join is the dual of a meet – a least upper bound.
In an MSL, some types have joins and some do not.
The ones that do not are incompatible - they share
no upper bounds at all. Sets that do have upper
bounds (even if no joins) are compatible.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 3 of 31

Example of a Non-meet-semi-lattice

a b

c d

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 4 of 31

Reducibility

 A type, c, is meet-reducible (resp. join-reducible) iff
there exist types a and b such that a,b, and c are
distinct and c=meet(a,b) (resp. join(a,b)).

 Proposition: in a MSL, the meet irreducible types
are the maximal types and the unary branching
types.

a

b

c

a

b

c

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 5 of 31

Reducibility

 A type, c, is meet-reducible (resp. join-reducible) iff
there exist types a and b such that a,b, and c are
distinct and c=meet(a,b) (resp. join(a,b)).

 Meet/join-reducibility ratios are a good measure of
how “interesting” the type signature is, and
determines the size of their representations.

a

b

c

a

b

c

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 6 of 31

What's Wrong with Non-MSLs?

 In general: nothing.
 In HPSG: types play a very important role in

introducing and constraining structure.
 Many people prefer that every principle's antecedent be a

single type.
 Even people who do not so prefer will often introduce

features at unique types, i.e., for every feature F there is
a unique type t such that for all s, if s is appropriate to F,
then s is a subtype of t.

 The result is that unifications (in the case of non-
MSLs) or entire descriptions (in the case of non-
unique feature introduction) must be either delayed
or evaluated non-deterministically.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 7 of 31

The ERG Type System is a Non-MSL

 No large-scale grammar has been more averse to
disjunction than the English Resource Grammar
(ERG; Flickinger et al. 1999).

 At the genesis of the ERG, disjunction was equated
with non-deterministic search. This is not
necessarily the case.
 Independent sources of non-determinism in

search can lead to intractability.
 Delaying is less clear-cut.

 Yet the ERG's type system is not quite an MSL.
 It is very close, however...

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 8 of 31

Type Structure in the ERG

 There is a kind of structure here: multi-dimensional
inheritance (Erbach, 1994).

 There's also a structure apparent in the choice of
many type names, e.g., 1or3pl+2per+1per+non1sg

 The problem is that the structure isn't reified.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 9 of 31

Do we really need Non-MSLs in HPSG?
 Under specific assumptions such as using multi-

dimensional inheritance in the LKB (which provides
no formal support for this choice), the answer
seems to be 'yes'.

 On the other hand, there are also indeed grammars
that bear little resemblance to the ERG but have
non-MSL type systems.

 In my opinion, we have yet to see a satisfactory
explanation or systematic investigation of when
they're required or useful and why.

 This is especially interesting when considered
against the backdrop of a community that does
have some interest still in constrained formalisms.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 10 of 31

Computational Approaches to Non-MSLs

 With not even a single exception that I am aware
of, every HPSG parser has approached processing
with non-MSLs by either prohibiting them altogether
(e.g., most of the old ones, ALE until quite
recently), or automatically converting them into an
MSL.

 This is even more intriguing, because it implies that
we need non-MSLs at the source-code level, in spite
of a perceived difficulty in computing with them.

 ... and that perception is unsupported by
experimental evidence (merely some very early,
doomed, non-deterministic attempts).

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 11 of 31

Computational Approaches to Non-MSLs

 Even so-called bit-vector-based approaches
generally convert to an MSL (e.g., PET), even
though the completion is in fact already latent in
that choice of data structure (at least if unification
is implemented by bitwise AND).

 The conversion can take place all at once during
compilation (e.g., PET and now the LKB).

 ... or incrementally, as needed (e.g., the LKB's
earlier method, although this apparently did not
work correctly; such algorithms are known,
however).

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 12 of 31

The Dedekind-MacNeille Completion

 Again, without exception, the conversion is
implemented by computing the Dedekind-MacNeille
completion.

 This is the smallest MSL that contains the original
partially ordered set. If the original poset is not an
MSL, it adds completion types.

 In the worst case, the DMC adds exponentially
many completion types as a function of the size of
the original poset.

 Presumably, everyone who performs a completion
performs this one because of concern about size.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 13 of 31

Example of a DMC

b c

e

d

f

a

 Original:

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 14 of 31

Example of a DMC

b c

e

d

f

a

 DMC:

?

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 15 of 31

Size of the DMC

 Size, however, is only a concern when enumerating
or naming all of the completion types. Non-MSL
users never do anyway (e.g., glb127 in the LKB).

 It is generally not a concern with bit-vector-based
representations. Size is determined by the choice
and implementation of the supported structural
operations.
 For join-preserving bit-vector encodings, implemented by

bitwise AND, the minimum attainable length of the vector
(in bits) is the number of meet-irreducible elements in
the poset. This is true of both the poset and its DMC!

 Non-bit-vector-based representations typically use
string hashing, so almost no effect there either.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 16 of 31

Time with the DMC

 When the DMC is compiled in advance, it adds
essentially a constant factor to parsing time.

 In fact, one can regard completion types as an
implementation of delaying (v. non-determinism) at
the level of the type signature.

 We really don't know how much latency is added in
practice by caching them on the fly – the only
widely-used implementation of this had an error in
it.

 We do know, however, that because the DMC is the
smallest completion, it is the most time-consuming
to cache-compute.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 17 of 31

DMC Redux

 So there's a lot of room to expand into here – the
DMC favours pre-computation or no computation
and adds very little space.

 ...and remember that we've all decided to use non-
MSLs at the source-code level because of their
convenience.

 Is the DMC as convenient as it could be?
 Could completion types reify more than just an

unnamed instance of delaying?
 The HPSG community has painted itself into a

corner with a lot of naïve assumptions about
computation with non-MSLs.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 18 of 31

Example of a DMC

b c

e

d

f

a

 Original:

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 19 of 31

Example of a DMC

b c

e

d

f

a

 DMC:

?

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 20 of 31

Example of (Part of) a Conjunctive Lattice

b c

e

d

f

a

 Conjunctive Lattice tells us about unification
history:

a&b&c&d

a&b&da&b&c a&c&d b&c&d

a&da&c b&d c&da&b ...

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 21 of 31

Direct Parsing with Non-MSLs
 Label representations of feature structures with

conjoined sets of types.
 Whenever this set is a singleton, there may be

some principles to enforce, features to add, etc.
 These labels can be shown to the user, and make

sense.
 Naïve representation: sorted lists without joins

(actually, sufficient to use maximally specific anti-
 chains)

 Naïve unification algorithm: set union, followed by
attempting to “pinch” every pair to its join.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 22 of 31

Pairwise Pinching will not Work
 No pair from {a,b,c} has a join, but {a,b,c} does!

b ca

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 23 of 31

Prime Sets

 A prime set is an anti-chain, S, |S|>1, of which
every non-empty subset, T, has a join iff |T|=|S| or
|T|=1.

 The joins of prime sets of size > 2 cannot be
computed by the pinching-pairs algorithm.

 Proposition: P is an MSL iff all of the prime sets
are of size 2 or less.

 Proposition: The maximum size attainable by a
prime subset of P is floor(½ (|P|-1)).

 In principle, there could be a lot of prime subsets.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 24 of 31

Anti-Chain

 Given a poset P, and subset S, S is an anti-chain iff
for all x,y in S, neither x<y nor y<x.

 {a,b} is an anti-chain. {a,c} and {a,b,c} are not.

a

b

c

a

b

c

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 25 of 31

Pseudoprime Sets

 Yet computing the prime sets of P doesn't have to
be expensive, when there aren't many of them.

 A pseudoprime set is a compatible set, S, |S|>1, of
which every non-empty subset, T, has a join iff
|T|=1.

 Proposition: Every proper subset of a prime set is
a pseudoprime or singleton set.

 Proposition: Every proper subset of a
pseudoprime set is pseudoprime or a singleton set.

 These two propositions immediately give us a
constructive recipe for discovering primes: don't try
– find the pseudoprimes instead.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 26 of 31

Seeding the Pseudoprime Algorithm

a b

c d

 Every such pair {a,b} is a pseudoprime set of rank
2.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 27 of 31

Primes and the ERG

9

8

7

6

5

4

3

2

0 500 1000 1500 2000

1870

192

50

0

0

0

0

0

1436

1977

1460

485

146

41

9

1

English Resource Grammar

prime sets

pseudoprime
sets

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 28 of 31

Primes and the Berlin Grammar

9

8

7

6

5

4

3

2

0 200 400 600

425

8

1

0

0

0

0

0

222

291

253

102

12

0

0

0

Berlin Grammar

prime sets

pseudoprime
sets

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 29 of 31

How fast is Parsing without DMC?

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 30 of 31

Conclusion

 There is a lot of very interesting work to be done on
non-MSLs, both empirical (investigating conventions
of use) and computational (better algorithms and
representations).

 The Dedekind-MacNeille completion has been an
article of faith in HPSG parsing that presents
serious drawbacks to almost every aspect of using
non-MSLs in HPSG design.

 Even if we do really need non-MSLs, we definitely
do not need the DMC.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 31 of 31

Conclusion

 Prime sets are a simple tool for spectrally analysing
the structure of non-MSLs in a way that generalizes
the usefulness of MSLs.

 Prime sets grow very slowly on multi-dimensional
structures such as the ERG, in which intersections
among dimensions are explicitly selected.

 This leads to a very natural and efficient procedure
for type unification - even our first attempt at an
implementation suggests an acceptable latency (6%
at run-time) for this approach.

 They also allow us to name our types sensibly,
using a conjunctive lattice.

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 32 of 31

Automaton-based Indexing of
Prime Sets by Example
 Original poset:

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 33 of 31

Automaton-based Indexing of
Prime Sets by Example
 DMC (not computed):

Gerald Penn HPSG Design and Meet Semi-Latticehood 1 July 2010 | 34 of 31

Automaton-based Indexing of
Prime Sets by Example
 Automaton:

